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I. INTRODUCTION

The present paper deals with the degree of approximation in C2rr,2rr and
in C([2), the space of continuous and real-valued functions j(x, y) which
are 2n-periodic with respect to each variable, and the space of functions
which are continuous and real valued on the square [2 with [= [ -1, + 1].
As approximating functions we shall exclusively deal with blending
functions or pseudopolynomials, Functions of this type have already been
introduced in A. Marchaud's well-known papers [15, 16J, where he con
siders his pseudopolynomials

m n

p: [0, IJ2 3 (x, Y)i---+ L xi'Ai(y)+ L BiX)'yiEIR;
i~O i~O

here, Ai and Bi are functions in B[O, IJ (or B(I)), the space of bounded,
real-valued functions on the interval [0, 1J, and m, n ~ 0 are integers. In
case m = n =0 we get p(x, y) = A (y) + B(x), a sum of univariate functions.
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In modern terminology one uses tensor products in order to describe
spaces of pseudopolynomials. Given the (real) linear spaces V, W of
univariate functions, then the tensor product space V @ W of bivariate
functions is the span of all product-type functionsf(x) g(y) withfE V and
g E W. Let Pk and T k denote the spaces of algebraic and of trigonometric
polynomials of degree k or less; thus Marchaud's pseudopolynomials con
stitute the space Pm@B(I)+B(I)@Pn.

In the present paper we shall deal with the corresponding continuous
subspace Pm @ C(I) + C(I) @ Pn of algebraic pseudopolynomials, and with
its periodic equivalent, Tm@ C2rr + C2rr @ Tn' of trigonometric pseudo
polynomials.

The interest in finding approximations from these and related spaces
(mainly for the purpose of surface fitting and related computer aided
geometric design applications) was revitalized by two fundamental papers
of W. J. Gordon [7,8]. He used Boolean sums or blending methods in
order to generate his "hyperpolynomials" or "blending functions."
However, a number of little-known papers on these approximation
problems had been published earlier in the European literature. In addition
to Marchaud's papers, we mention the articles of L. Neder [17] and D. D.
Stancu [21]. For more complete historical information the reader is
referred to [7,21].

While the classical papers mainly focused on modifications of inter
polation operators (see the work of the Romanian school, in particular), it
is known from a paper of M. Nicolescu [18] that the Weierstrass
approximation theorem for so-called Bagel continuous functions holds for
approximation by certain algebraic pseudopolynomials (see, e.g., I. Badea
[2]). More recently, the question whether certain sums of tensor product
spaces are proximinal has been dealt with to some extent; here we refer to
the survey article of E. W. Cheney [4]. However, there seems to be little
information on quantitative assertions. As exceptions we mention I.
Badea's [1] quantitative version of Nicolescu's theorem by using Boolean
sums of univariate Bernstein operators, and the recent paper of W.
Haussmann et al. [9], who derive the Favard type estimate for
trigonometric blending approximation. We also refer to the paper of W.
Haussmann and K. Zeller [10] and to the references therein, where
estimates can be found concerning some special situations.

The aim of the present paper is thus to improve and generalize these
quantitative assertions by showing that full analogies of S. B. Steckin's
[22] and Yu. A. Brudnyi's [3] famous univariate results of the Jackson
type hold for approximation by pseudopolynomials as well. These
estimates will be given in terms of a certain product-type modulus of con
tinuity WkJ' which seems to have been used for the first time by A.
Marchaud in his 1924 paper. This modulus is sometimes also denoted as
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the mixed modulus of smoothness (A. F. Timan [23, p. 113]) or as the
(k,l)-modulus of smoothness (L. L. Schumaker [19, p. 516]).

Section II of the paper reviews some of the properties of this mixed
modulus of smoothness. In Section III, our Jackson-type theorem for the
periodic case is presented; Section IV deals with the algebraic setting.

As for the methods employed in this paper, we shall be exclusively work
ing with univariate linear operators L, L' and with the Boolean sum

of their parametric extensions xL and yL'; here xL acts on the bivariate
function f(x, y) as if y is considered to be a fixed parameter, and ,L' is
described in a similar way. The methods extend to the multivariate case,
but we shall not stress this.

II. REMARKS ON MARCHAUD'S PRODUCT-TYPE MODULUS

Univariate differences are used in order to define the mixed modulus of
smoothness. For a function f: IR -.. IR, let

J~f(x) := f(x),

,dAf(x) :=,daf(x) :=f(x)- f(x+o),

JU(x):=JMJ~-lf(x)), l<kEN,

where x, 0 E IR, and explicitly,

(2.1 )

k?: O. (2.2)

For fE C21t (continuous 2n-periodic functions) the kth order modulus of
smoothness of f is defined by

0h(f;e) :=sup{sup{IJU(x)l: 101 ~e} :XEIR}, O~eEIR. (2.3)

For bivariate functions f: [R2 -.. IR, we consider the parametric extensions
xJ~ and yJ~ of J~ and ,d~ (acting on the first variable x and the second
variable y, respectively). Then, for arbitrary h, kENo and 0, Y/ E IR we define
product-type differences by

,d~:~f(x, y) := x,d~L",d~f(x,y))

= pto ,to (-1 y+ v C)(~)f(X + po, y + vy/). (2.4)
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The product-type modulus is then for 0 ~ eE IR, 0 ~ P E IR given by
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wh,k(f;e,p) :=sup {sup {1L1~:~f(x, y)l: 101 ~e, 1'71 ~p}: (x, y)EIR 2
}. (2.5)

Badea [1] considers the case h = k = 1 in order to define his so-called B
modulus and to give the quantitative version of Nicolescu's theorem men
tioned above, Here, L11:~f(x, y) = f(x, y) - f(x + 0, y) - f(x, y + '7) +
f(x + 0, Y + '7). In case h = k = 0 we also write wo,o(f; ',*) = Ilfll 00 since, iff
is continuous and bounded on 1R 2

, this is the usual Chebyshev norm.
Let us quote some important properties which follow readily from (2.4):

(a) If f is the product of two univariate functions, f(x, y) =
fl(X)f2(Y)' then

L1~:~f(x, y) = L1~fl(X) L1~f2(Y)'

Wh.k(f; e, p) = wh(fJ ; e) wdf2; p).
(2.6 )

As a consequence, if fl E Ph ~. J or f2 E Pk ~ I' then L13:~f= o. Thus, for all
O~eEIR, O~PEIR, the modulus whk(';e,p) annihilates the space Ph~l@

V + V@Pk .. J with V:= {f: IR -+ IRf·

(b) If we consider W h•k (-; e, p), for fixed e, p, as a functional on the
space C2n.2n , then Wh.k(·; e, p) has the properties of a semi-norm. Moreover,
for f E C2n,2n we have by a compactness argument that

(2.7)

for some appropriate (x*, y*), (0*, '7*) E 1R 2 with 10*1 ~ e, 1'7*1 ~ p, and

lim Wh,k(f; e, p) = O.
(f.,p)~ (0.0)

(2.8 )

(c) For fE CM (i.e., f: 1R 2 -+ IR having continuous derivatives pa,{i),

O~rx~p, O~{3~q) we get

(2.9)

and in particular for h = k = 0:

(2.10)

This may be verified by introducing the B-spline functions (cr. L. L.
Schumaker [19, p. 517]). For example, if p>O, then

Bp,a(O=I/(P-l)!v~o(-ly(~)(~+va)';.-1
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has compact support [0, -po] or [-pO, 0] for 0<0 and 0>0, respec
tively, and using integration by parts, we find the convolution formula that,
for f E CP(~),

A£f(x) = f) f(p)(s) Bp,iJ(x - s) ds
-- 00

= foo f(p)(x-s) Bp,iJ(s) ds.
- 00

The corresponding bivariate convolution formula for p, q >°is

A£:;f(x, y) = foo foo f(p,q)(x - s, y - t) Bp,o(s) Bq,~(t) ds dt.
-00 -00

Hence

A£,:h,q+kf(x, y)

=Ah,k(AP,qf(x y))
iJ,~ iJ,~ ,

= foo foo xALA~ f(p,q)(x - s, y - t) Bp,iJ(s) Bq,~(t) ds dt,
-00 -00

and for 101 :::; e, 1111:::; P

IAK:h,q+kf(x, y)1

:::;wh'k(f(p,q);e,p)'lf~oo Bp,iJ(s)ds f~oo Bq,~(t)dtl

= 10lP ·ll1l q
• Wh,k(f(P,q); e, p).

Now the estimate given in (2.9) is apparent.

III. JACKSON-TYPE THEOREMS FOR

TRIGONOMETRIC BLENDING ApPROXIMAnON

Jackson's theorem in its general form tells us that, for every h, mEN,

there is a linear operator

(3.1 )
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(3.2)

for some constant M h independent of f and m. In this section we shall
extend this by proving the following bivariate result.

THEOREM 3.1. For every h, k, m, n EN there is a linear operator

satisfying the estimate

(3.3 )

Proof We may assume that the operator J hm in (3.1) is defined by
some higher-order Jackson kernel

m

uh,m(t) = 1+ 2 L ai cos it ~ 0
i~ 1

with real coefficients ai = ai,h.m and such that

[f- Jh,m(f)](x) = 1/2nr L17f(x) Uh,m(t) dt,f E C 211 (3.4)
-11

(cf., e.g., Lorentz [14, p. 57]). Theorem 3.1 will be proved by using the
Boolean sum J= ,Jh,mffiJk,n' Indeed, if we put

[f -J(f)](x, y):= 1/4n2r r L17::f(x,y) uh,m(t) Uk,n(S) dt ds (3.5)
-1t -~-1r

for f E C211,211' then

[f - J(f)](X, y)

=f(x, y)- Jh,mf(x, y)- yJk,nf(x, y)+ Jh,moJk,n/(X, y)

= (F - Jh,mF)(X, y).

where F(x, y) = (f - yJk,nf)(x, y).
Now, using (3.2) for the operators Jh,m and Jk,n and some properties of

the univariate modulus of continuity, we get for appropriate (xo, Yo),
(x*, y*), and (a*, tf*) E [R2 with la*1 ~ 11m, Itf*1 ~ lin:
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Ilf -J(f)lloo = I(F- Jh,mF)(xo, Yo)1

= max {I (F - Jh,mF)(X, Yo)l: x E IR}

~ Mhwh(F(', Yo); 11m)

= M hIxL1~.F(x*, Yo)!

= Mhl(xL1~.f -Jk,n[xL1~.f])(x*, Yo)!

~ M hmax {I LL1~.f - Jk.n[xL1~.f] )(x*, Y)I: Y E IR}

~ MhMkWkLL1~.f(x*, .); lin)

= MhMkIyL1~.(xL1~.f(x*, y*))1

~ MhMkwh,k(f; 11m, lin). I

Some consequences may be listed.

COROLLARY 3.2. For fE C21t,21t and V:= Tm® C21t + C21t ® Tn we have

for arbitrary h, kEN.

COROLLARY 3.3. For f(x, Y)=fl(X)f2(Y) withfl'/2EC21t we have

min{llf -vll oo : VE V} ~Mh'Wh(fl; 11m)' M k'Wk(f2; lin). (3.7)

This estimate is consistent with the fact that min {Ilf - vi! 00 : v E V} =
Ilf-v*lloo with (f-v*)(x,y)=[(fI-vd(x)]'[(f2-V2)(Y)]' where
VI E Tmand V2E Tn are univariate best Chebyshev approximations to fl and
f2' respectively (Haussmann and Zeller [11]).

The following are obtained through the observations made at the end of
Section II.

COROLLARY 3.4. For f E Cf;';21t and V = Tm® C21t + C21t ® Tn we have

infOf - vii 00: v E V} ~ MpMqm -~n -lJwp _ ~.q_lif(~,IJ); 11m, lin),

O~rx.~p,O~f3~q. (3.7)

In case rx. = p, f3 = q this reads

inf{ Ilf - vii 00: v E V} ~ MpMqm -Pn-qllf(p,q)11 00' (3.7')

Remark 3.5. (i) Estimate (3.7') yields the same order of approximation
for differentiable functions as given in the paper of Haussman et al. [9],
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where, in addition, best possible values for the constants M p and M q can
be found (Favard constants K p and K q , respectively). The same estimate is
also obtained by applying a recent rather general, but non-constructive
argument of M. v. Golitschek [5].

(ii) The problem of finding good (or even best possible) constants
M h . M k in Theorem 3.1 and its Corollary 3.2 is far more involved and
requires considerably more information on the univariate case than was
used in the proof of Theorem 3.1. To our knowledge it is not known, for
instance, what the best possible functions Ck( y), k? 1, y > 0, are in an
estimate of type

With the exception of the case k = 1 (where the well-known result of Kor
neicuk is available) an analogous statement is true for estimates in terms of
the more common quantity Wk(f; nj(m + 1)), m? 0. However, a significant
contribution in this direction (for the case k = 2 and by using linear
methods) was made by V. V. Zuk [24]; his results will be generalized to
the cases k > 2 in a forthcoming paper of A. Sperling and the first author of
this article.

IV. THE ALGEBRAIC CASE

We also find pointwise Jackson-type estimates for approximating
functions f E C([2), [= [ - 1, 1], by elements of the algebraic blending
space

W:= Pm® C(I) + C(I)®Pn, m, n? 1. (4.1 )

Here the modulus (2.5) has to be slightly modified, namely

Wh,k(f; e, p) := suplL1~:~f(x, y)1

where the sup is now taken over all (x, y) E [2, (a, 1/) E 1R 2 such that (x + hb,
y+k1/)E[2, lal ~e, and 11/1 ~p.

For the case h =k = 1 it is possible to arrive at a Jackson-type theorem
using the trigonometric transformation technique known from the
univariate case. However, it is known from this case as well that this
technique fails for the higher-order cases. This is our reason for using a dif
ferent and even simpler approach.

As was the case for the above C2n,2n theorem, our result will be based
upon an estimate for approximation of univariate functions by certain
linear operators.
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THEOREM (see H. Gonska and E. Hinnemann [6]). Let r ~ 0 and s ~ 1.
Then there is a sequence Qn = Q~'s) of linear polynomial operators mapping
C(I) into Pn' such that for all f E C(I), all Ixl:O:; 1 and all n ~
max(4(r + 1), r + s) one has

Here L/n(x):= (1_x2
)1/2. n- 1 +n-2, and M r•s is a constant independent off,

x, andn.
For our purposes it suffices to use the operators Q~o.sJ, which we shall

denote by Qs.n for the sake of brevity. We also put M s := M o.s.

THEOREM 4.1. For every h, kEN and m ~ max(4, h), n ~ max(4, k) there
is a linear operator Q=Qh.m;k.n: C(/2)-+Pm@C(I)+C(/)@Pn satisfying
the estimate

The constants M h and M k are given as in the preceding theorem, and are thus
independent off, (x, y), and (m, n).

Proof As we did in the proof of Theorem 3.1, we define Q to be the
Boolean sum of (parametric extensions of) univariate operators. More
precisely,

and

[f - Q(f)J(x, y) = (F - xQh.mF)(X, y)

with F(x, y) = (f - yQk.n!)(X, y).
Now

I[f - Q(f)J(x, y)1 = I(F - xQh.mF)(X, y)1

:0:; Mhwh(F(', y); L/m(x))

= M hlxL/3· F(x*, y)1 with 10*1 :O:;L/m(x)

= M h I xL/3.f(x*, y) - yQk.n(xL/3.f(x*, y»1

:0:; M hM kwkLL/3.f(x*, .); L/n(y»

= MhMk yL/~'(xL/3.f(x*, y*» with 1'1*1 :O:;L/n(y)

:0:; MhMkWh.k(f; L/m(x), L/n(y»· I



JACKSON-TYPE THEOREMS 405

The following corollaries are analogous to the ones obtained for the
trigonometric case

COROLLARY 4.2. For fEC(/2) and V:=Pm®C(/)+C(/)®Pn,
(m, n) ~ (max(4, h), max(4, k)), one has

inf{ Ilf - vii 00: v E V}:::; M h' M k · Wh.k(f; 21n, 21m)

for h, k~ 1.

COROLLARY 4.3. For f(x, y) = fl (x) . f2(Y), fl' f2 E C(I), and (m, n) ~
(max {4, h}, max {4, k}) one obtains the inequality

min{ Ilf - vii 00: VE V}:::; M h' Wh(fl; 21m)' M k ' Wk(f2; 2In).

COROLLARY 4.4. For any f E Cp.q(P) there is an element v E Pm ® C(I) +
C(/) ® Pn such that for all (x, y) E /2 and 0:::; ex :::; p, 0:::; f3:::; q there holds:

If(x, y) - v(x, y)1 :::; M pA~(x)' M qAe(y)' wp_~.q_p(f(~·(J);Llm(x), An(y))·

For the case ex =p, f3 = q we have

Remark 4.5. The determination of best possible constants M h for
univariate results is even more complicated in the algebraic case. For
instance, the proof of Theorem 1 in Haussmann et al. [9] makes heavy use
of the Favard-Ahiezer-Krein theorem, but no complete analogy of this
theorem is known for the algebraic case, although an important con
tribution is due to H. SinweI [20].

Pointwise estimates in terms of first- and higher-order moduli of
smoothness of arbitrary continuous functions exhibiting small values of the
constants are even more difficult to achieve. For the univariate case and
h = 1 we mention papers of O. KiS and Ho Tho Cao [12], who obtained
small constants via an interpolatory approach of Lagrange type, and of H.
G. Lehnhoff [13], who investigated an efficient sequence of univariate
positive linear operators.

Note added in proof It has been brought to our knowledge through Yu. A. Brudnyi's
recent review No. 537.41012 in "Zentralblatt flir Mathematik" (March 1985) that he as well as
M. K. Potapov have dealt with questions related to our paper (Izv. Akad. Nauk SSSR, Ser.
Mat. 34 (1970), 564-583, and Tr. Mat. Inst. Steklova 117 (1972), 256-291, respectively).
However, both authors treat the LP case, l,,;;p";; 00, while our paper deals with continuous
pseudopolynomials. Furthermore, neither of their papers contain pointwise assertions.

640/48/4-6
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